
Vissim	Kernel	for	Linux
A	full	manual	for	PTV	Vissim	is	distributed	with	the	Windows	package	and	is
accessible	here:	https://cgi.ptvgroup.com/vision-help/VISSIM_2022_ENG.	This
document	only	describes	the	usage	of	the	PTV	Vissim	Kernel	for	Linux.

Installation	requirements
PTV	Vissim	Kernel	is	supported	only	on	the	64-Bit	Ubuntu	long-term	support	releases
18.04	and	20.04.	This	manual	assumes	installation	on	Ubuntu	18.04.

However,	the	installation	package	for	PTV	Vissim	Kernel	is	almost	self-contained	and
should	run	on	most	reasonably	modern	Linux	distributions.	The	only	external
references	are:

libc6	>=	2.27	(various	shared	libraries:	pthread,	libm,	…)
GCC	support	library	>=	8.4	(libgcc_s.so)

For	the	actual	installation,	some	other	standard	tools,	for	example	tar,	are	required.
In	addition,	to	access	the	DrivingSimulator	interface,	a	C/C++	compiler	tool	chain	is
required,	as	you	need	to	write	a	program	against	the	shared	object	library.

Non-Ascii	filenames	are	only	supported	if	a	Unicode	locale	is	active.	Most
distributions	set	a	Unicode	locale,	but	e.g.	Docker	containers	may	not.	As	an	example,
you	can	set	the	US	Unicode	locale	with	the	command:

export	LC_ALL=en_US.utf8

Activation	of	Licenses
There	are	two	licensing	options:	software	license	or	cloud	license	(CmCloud).

Software	license	works	with	an	activation	code.	You	need	to	install	your	license
as	a	CodeMeter	License	Server	on	a	physical	machine.
Cloud	license	(CmCloud)	works	with	a	certificate	(this	is	a	*.wbc	file).	You	do	not
need	to	set	up	a	CodeMeter	License	Server.

Prerequisites:

Your	PTV	Vissim	Kernel	license	activation	code	or	certificate	file	(depends	on	the
license	option)
Network	access	from	each	(virtual)	machine	which	runs	PTV	Vissim	Kernel	to	the
CodeMeter	License	Server	(software	license)	or	to	the	cloud	(cloud	license
[CmCloud])

Setting	up	a	CodeMeter	License	Server	(only	for
software	license	with	activation	code)
Note:	Running	a	CodeMeter	License	Server	on	a	Virtual	Machine	is	not	supported
with	the	software	license.	The	CodeMeter	License	Server	is	usually	not	the	machine
on	which	PTV	Vissim	Kernel	runs.

Download	the	"CodeMeter	User	Runtime"	suitable	for	the	CodeMeter	License
Server's	operating	system	from	https://www.wibu.com/support/user/user-
software.html	and	install	it.	If	the	CodeMeter	License	Server	runs	on	Ubuntu	18	you
need	the	"CodeMeter	User	Runtime	for	Linux".

Install	the	package	with	the	command:

sudo	apt	install	<path_to_installation_package>

Enable	the	CodeMeter	network	server	mode:

You	can	use	the	CodeMeter	WebAdmin	interface
(https://www.wibu.com/magazine/keynote-articles/article/detail/the-new-look-of-
webadmin.html)	It	should	be	available	at	http://localhost:22352/	.	Under
Configuration/Server/Server	Access	enable	Network	Server.	You	can	probably	ignore
the	Network	Port.
Alternatively,	on	Linux	you	can	modify	the	setting	IsNetworkServer=1	in	the
CodeMeter	configuration	file	/etc/wibu/CodeMeter/Server.ini	and	then	restart	the
CodeMeter	service.

If	needed,	more	details	are	provided	in	the	CodeMeter	Administrator	Manual
available	at	https://www.wibu.com/support/manuals-guides.html

Start	a	web	browser	on	the	CodeMeter	License	Server	machine	and	activate	your
licenses	with	your	activation	code	on	the	license	activation	web	page.	You	should
have	received	both	the	activation	code	and	the	address	of	the	web	page	when	buying
your	license.	The	activated	licenses	are	bound	to	the	CodeMeter	License	Server
machine.	If	you	want	to	activate	the	licenses	on	another	machine	you	have	to
deactivate	them	first.	You	can	do	this	also	with	the	activation	code	on	the	license
activation	web	page.

PTV	Vissim	Kernel	machine
Each	machine	running	PTV	Vissim	Kernel	needs	network	access	to	a	CodeMeter
License	Server.

On	each	PTV	Vissim	Kernel	machine:

Download	the	64-Bit	"CodeMeter	User	Runtime	for	Linux"	from
https://www.wibu.com/support/user/downloads-user-software.html
Install	it	with	the	command:	sudo	apt	install	<path_to_installation_package>
If	you	use	a	software	license	and	host	your	own	CodeMeter	License	Server,	on
which	you	activated	your	license,	add	it	to	the	search	list:
cmu	--add-server	<CodeMeter	License	Server	IP	Address>
If	you	use	a	cloud	license	(CmCloud)	activate	your	certificate:
cmu	--import	--file	<certificate>.wbc

PTV	Vissim	Kernel	will	automatically	use	a	license	from	the	CodeMeter	License
Server	or	from	the	cloud.

In	case	of	problems	with	your	software	license,	you	can	verify	that	your	CodeMeter
License	Server	and	its	hosted	licenses	are	found	with	cmu	--list-server	--list-content.

Installation
Download
Download	the	PTV	Vissim	Kernel	installation	package.	It	consists	of	a	compressed
archive.

Extract
We	recommend	to	extract	the	archive	to	the	folder	/opt:

cd	/opt
sudo	tar	xf	<path_to_installation_package>

This	unpacks	the	whole	distribution	into	a	sub-folder	of	/opt.

Verify
You	should	now	be	able	to	start	the	command	line	client	under
/opt/<vissim_subfolder>/bin/vissim-kernel.

Vissim	calculates	the	location	of	all	installed	files	relative	to	the	location	of	the
executable	or	the	driving	simulator	shared	object,	so	no	further	setup	is	required.

Usage	of	PTV	Vissim	Kernel
The	Vissim	command-line	client	is	generally	started	with	the	command	line

vissim-kernel	<options>	<inpx-filename>

If	the	path	to	the	bin/	directory	has	not	been	set,	you	must	use	the	absolute	path
name	to	the	installed	executable.

<inpx-filename>	is	the	absolute	or	relative	path	to	the	Vissim	input	file	to	simulate.

The	following	options	are	supported:

-h	/	--help

gives	a	command	summary	of	all	options

-c	<filename>	/	--config	<filename>

Uses	the	given	filename	for	configuration	parameters	instead	of	the	configuration	file
in	the	user’s	home	directory	(see	below	for	details)

-s	<no>	/	--simRunNo	<no>

Sets	the	number	of	the	simulation	run.	If	not	set,	Vissim	automatically	selects	this
number	depending	on	already	existing	simulation	runs.

-r	<seed>	/	--randSeed	<seed>

Uses	the	supplied	integer	as	the	seed	for	the	random	number	generator.	If	this
parameter	is	not	set,	the	seed	is	taken	from	the	network	file.

--recordANI

Records	animations	during	the	simulation	which	can	be	replayed	with	the	Windows
GUI.	Network	objects	for	the	animation	recordings	must	be	configured	in	the	input
file.

-t	<numThreads>	/	--threads	<numThread>

Uses	up	to	the	specified	number	of	threads	for	the	simulation.

-v	/	--verbose

Increases	verbosity	of	the	output.

-o	/	--output_folder

Overrides	the	simulation	result	output	folder	defined	in	the	inpx.	Causes	all

simulation	results,	including	evaluation	result	databases	to	be	written	directly	to	the
provided	directory.

--version

Prints	version	information	and	exits.

The	examples	directory	contains	a	network	file	which	is	configured	to	write	a	network
performance	evaluation	into	the	database	in	the	*.results	folder	next	to	the	input	file.
When	simulated	with	--recordANI,	an	animation	of	the	vehicles	in	the	network	is	also
written	to	<filename>.ani	in	the	folder	of	the	input	file.	Both	outputs	can	be	copied	to	a
Windows	computer	to	be	analyzed	with	the	Vissim	GUI.

To	configure	some	settings,	PTV	Vissim	Kernel	uses	configuration	files.	Settings	are
first	read	from	the	installation-wide	configuration	file	under	etc/vissim.cfg	in	the
installation	directory.	These	can	be	further	overridden	by	user-specific	configurations
in	a	file	$HOME/.config/ptv-vision/vissim-kernel-<version>/vissim.cfg	(e.g.	with	<version>	=
2022)	or	by	the	configuration	file	given	with	the	-c	/		--config	command-line
parameter.	The	installation-wide	configuration	file	comes	with	documentation	on	the
meaning	of	the	individual	configuration	options.

Note	that	PTV	Vissim	Kernel	has	some	limitations	as	of	now:

Simulation	results	may	differ	between	simulations	run	on	Linux	and	Windows.
This	is	a	fundamental	limitation	due	to	the	different	runtime	environments	(libc).
Several	extension	interfaces	have	not	been	implemented	under	Linux	yet.	In
particular,	signal	controllers	and	the	emission	interface	do	not	work.	Driver
model	should	work,	but	is	not	yet	supported.
Internal	scripting	is	not	supported.
Scenario	management	support	is	not	supported.
Playing	sound	files	when	triggering	detectors	is	not	supported	under	Linux.

DrivingSimulator	interface
In	addition	to	running	simulations	from	the	command	line,	you	can	also	use	the
DrivingSimulator	(DS)	interface.	This	offers	a	C	interface	that	is	identical	to	the
interface	supported	by	the	full	PTV	Vissim	package	for	Windows.	The	interface	is
accessible	through	the	shared	object	libDrivingSimulatorProxy.so.

Example
An	example	program	for	the	DrivingSimulator	interface	can	be	found	in
examples/DrivingSimulatorInterface.	To	run	this	example,	install	the	GNU	C++	compiler
and	perform	the	following	steps:

Make	a	copy	of	the	examples/DrivingSimulatorInterface	directory	and	cd	into	that
copy.
Run	env	VISSIM_INSTALL_DIR=<path	to	vissim>	bash	build.sh	to	build	the	example.
Run	./DrivingSimulatorTextClient	10	10	to	run	the	example.

Architecture
To	use	the	DrivingSimulator	interface,	include	the	DrivingSimulatorProxy.h	header
located	in	the	include	folder	of	your	Vissim	installation	and	link	against	the
libDrivingSimulatorProxy.so	file	in	the	lib	folder.

After	linking	against	libDrivingSimulatorProxy.so,	you	need	to	ensure	that	the	dynamic
linker	finds	the	library	on	program	start.	This	can	be	done	by	setting	the	environment
variable	LD_LIBRARY_PATH	to	the	lib/	directory	inside	the	Vissim	installation.

Alternatively,	you	can	use	the	RUNPATH	mechanism	to	insert	the	library	search	path
into	the	build	result.	See	the	build.sh	script	for	an	example.	Calling
Vissim_ConnectToKernel()	starts	a	PTV	Vissim	Kernel	instance,	and	initiate
communication	via	shared	memory.

The	DrivingSimulator	automatically	records	an	ANI	file	if	this	has	been	enabled	in	the
network	file,	which	is	the	case	for	the	demo	example.

Additional	optional	parameters	allow	to	set	the	frequency	of	the	simulator,	a	visibility
radius,	and	the	maximum	number	of	data	sets	for	vehicles,	pedestrians,	signal	groups
and	detectors	to	be	passed	in	one	or	both	directions.	In	the	Vissim	network	settings,
the	option	"driving	simulator"	needs	to	be	activated	and	a	default	vehicle	type	must
be	selected	to	be	used	for	DS	vehicles	with	unspecified	type.	After	loading	the
network,	Vissim	establishes	communication	with	the	proxy	library	and	waits	for	the
starting	location(s)	of	the	DS	vehicle(s)	present	at	the	start	of	the	simulation	run	(in
world	coordinates,	fitting	with	the	Vissim	network).

Vissim	determines	the	most	probable	location	for	each	DS	vehicle	in	the	Vissim
network	by	selecting	the	link	with	the	driving	direction	closest	to	the	orientation	of
the	DS	vehicle	from	all	links	at	the	passed	world	coordinates.

After	the	DS	has	placed	its	vehicle(s)	at	their	locations	in	the	Vissim	model,	the	first
time	step	of	the	Vissim	simulation	is	executed.	After	that	time	step,	Vissim	passes	the
world	coordinates	of	all	vehicles	in	the	network	(including	the	DS	vehicle(s))	to	the
DS	and	waits	for	the	new	location	of	the	DS	vehicle(s).	The	simulator	can	now	read
the	new	locations	of	the	Vissim	vehicles,	visualize	them	and	then	pass	back	a	new	set
of	locations	for	the	DS	vehicle(s).	After	this,	Vissim	immediately	calculates	the	next
time	step,	and	so	on.	When	the	DS	passes	the	new	location	of	the	simulator	vehicle(s)
to	Vissim,	the	DS	can	also	add	new	DS	vehicles	to	the	network	and/or	remove	DS
vehicles	from	the	network	and/or	pass	the	control	over	former	DS	vehicles	to	Vissim
and/or	take	control	over	former	Vissim	vehicles.	Because	of	this,	all	vehicles
(including	the	DS	vehicles)	need	to	be	identified	by	their	Vissim	vehicle	ID.	When	a
new	DS	vehicles	is	to	be	created,	the	DS	passes	a	CreateID	to	Vissim	which	is	then
returned	(only	in	the	next	time	step)	with	the	vehicle	data	including	the	actual	Vissim
vehicle	ID,	so	the	simulator	can	identify	multiple	DS	vehicles	and	can	subsequently
use	the	Vissim	vehicle	IDs	to	designate	all	DS	vehicles	to	Vissim.

Before	the	DS	passes	the	new	location	of	the	simulator	vehicle(s)	to	Vissim,	it	can
optionally	set	detector	states.	Before	or	after	retrieving	the	new	locations	of	the
Vissim	vehicles,	the	DS	can	optionally	retrieve	the	signal	states	passed	from	Vissim
and/or	a	list	of	all	vehicles	which	have	entered	the	Vissim	network	in	this	time	step,	a
list	of	all	vehicles	which	have	left	the	Vissim	network	in	this	time	step	and	a	list	of	all
vehicles	which	have	changed	their	location	in	this	time	step.

Similar	as	for	vehicles,	data	of	Vissim	(Viswalk)	pedestrians	and/or	DS	pedestrians
can	be	exchanged	if	desired.	Unlike	vehicles,	DS	pedestrians	can	be	created	only	at
the	start	of	a	simulation	run.	Furthermore,	Vissim	passes	only	data	of	Vissim
pedestrians	to	the	DS.

This	data	exchange	between	Vissim	and	the	DS	must	be	executed	at	least	once	per
Vissim	simulation	time	step.	If	the	simulator	runs	at	a	higher	frequency	(frame	rate)
than	Vissim,	the	interface	provides	automatic	interpolation	of	the	positions	of	the
Vissim	vehicles	and	pedestrians	between	Vissim	simulation	time	steps.

The	timing	of	the	co-simulation	is	controlled	by	the	DS.	It	can	run	faster	than	real
time	(if	this	is	possible	for	the	DS)	but	not	faster	than	a	stand-alone	Vissim	simulation
of	the	same	network.	(The	Vissim	simulation	of	a	time	step	can	take	much	less	or
much	more	than	real	time,	depending	on	the	used	hardware	and	the	size	of	the
network.	A	big	network	might	not	be	possible	to	be	simulated	with	very	short	time
steps	in	real	time.)	The	DS	can	slow	down	the	co-simulation	by	waiting	between	DLL
calls	as	much	as	desired	(e.g.	to	reach	exact	real	time)	without	hurting	the	Vissim
simulation	at	all.

